1H-DNMR STUDIES ON THE CIS-TRANS ISOMERISM OF DIAZOACETYLCHLORIDE
AND ITS DERIVATIVES

F. L. Dickert, F. M. Soliman and H. J. Bestmann, D-852 Erlangen
West Germany, Institute for Organic Chemistry and Institute for
Physical and Theoretical Chemistry
Henkestr. 42, Egerlandstr. 3

Abstract : Diazoacetylchloride and its ester derivates show a kinetically caused NMR-line shape for the $C\underline{H}$ -proton, due to a cis-trans isomerism.

As could be shown recently, the formerly unknown diazoacetylchloride can be synthesized from phosgene and diazomethane. In the NMR-spectra a temperature dependent line shape can be observed for the CH-proton, which is due to the kinetics of a cis-trans rearrangement, known for A-diazoketones 3,4,5 . At temperatures below ${\rm O^OC}$, sharp and separate signals are obtained for both isomers (A: high field signal $C_{\rm A}=5.2$ ppm, B: low field signal $C_{\rm B}=5.5$ ppm). The kinetic data are presented in the following table. Also included are two ester derivatives, resulting from the reaction of diazoacetylchloride with ${\rm C_6H_5OH}$ and ${\rm O_2N\,(C_6H_4)OH}$, respectively 1 .

$$\frac{1}{1}: N_{2}CHCOC1$$

$$\frac{2}{2}: N_{2}CHCOOC_{6}H_{5}$$

$$\frac{3}{1}: N_{2}CHCOOC_{6}H_{4}NO_{2}$$

$$\frac{1}{1}: N_{2$$

Rate constants and activation parameters for the cis-trans isomerization of diazoacetylchloride and its derivatives^{a)}.

	k _A (25°C)	k _B (25°C)	↑ ↑ A kJ/mol	/ H _B	^s _A ∫J/K mol	$\wedge s_{B}^{\ddagger}$ $[J/K mol]$
$\underline{1}$ (CCl ₄)		19.5+1.2	47+2.5	49+2.5	-66+8	-56+8
	(6.3+0.6)10 ²	(9+0.9)10 ²	51+3	52+3	-20+9	-16+9
$\underline{3}$ (CDC1 $_{\dot{3}}$)	(2.8+0.3) 10 ²	(3.5+0.4)10 ²	56+3	55+3	-13+9	-12+9

a) data obtained by line shape analysis, considering temperature dependence of K and .

The solvents employed were CCl₄ for $\frac{1}{2}$ respectively $\frac{2}{2}$ and CDCl₃ for $\frac{3}{2}$. The results show, that at room temperature the slowest isomerisation rate is observed for diazoacetylchloride. Looking at the activation parameters, compound 1 has the smallest activation enthalpy and the most negative activation entropy. At room temperature however, the entropy effect is much more important and therefore a very low rate results for 1 in comparison to 2 and 3. Astonishingly small is the change in the activation enthalpy if the electron donor respectively electron acceptor properties of the substituents X are varied under the condition of similar steric properties of X in 2 and 3. This can be explained by the resonance forms a,b and c. An electron withdrawing group favours both, the resonance structures with a C-C double bond (a and c) and that with a single bond (b). Therefore effects occur, which compensate each other and lead to activation enthalpies being nearly independent of the nature of X. A similar behaviour seems to be valid, comparing the rotations around the C-N bond in $(CH_3)_2N-CO(CH_3)$ and $(CH_3)_2N-CO(CF_3)^6$. Only small changes in the activation enthalpy (2 kJ/mol) are observed on the substitution of the CH3 group by CF3.

In parallel with the large change for the activation entropy, a different behaviour for the CH $^1{\rm H}$ chemical shift is observed, in going from 1 to 2 respectively 3. In contrast to 2 and 3, for compound 1, the chemical shift difference between the cis and trans isomer is strongly temperature—dependent. The same result is obtained for the equilibrium constant ${\rm K=k_A/k_B}$, which can be given precisely by direct spectra integration. At 25°C, 1, 2 and 3 yield nearly the same value for K (0.77±0.5), but only 1 gives a reaction enthalpy, significantly different from zero, resulting in a temperature dependent equilibrium constant. This can be explained by a strong solvation of molecule 1. From the negative activation entropy for the isomerisation process, it can be concluded that molecule 1 is more strongly solvated in the transition state than in the ground state. For the transition state, it can be assumed, that the resonance form b prevails, because of its free rotation around the C-C bond. Therefore a resonance structure such as b is favoured by CCl4 solvation in comparison to the structures a and c.

References

- H. J. Bestmann and F. M. Soliman, Angew. Chem. Int. Ed. Engl. <u>18</u>, 947 (1979).
- 2. H. Kessler, Angew. Chem. Int. Ed. Engl. 9, 219 (1970).
- 3. F. Kaplan and G. K. Meloy, Tetrahedron Lett. 1964, 2427.
- 4. F. Kaplan and G. K. Meloy, J. Am. Chem. Soc. 88, 950 (1966).
- 5. H. Kessler and D. Rosenthal, Tetrahedron Lett. 1973, 393.
- L. W. Reeves, R. C. Shaddick, and K. N. Shaw, Can. J. Chem. <u>49</u>, 3683 (1971).

(Received in Germany 16 February 1982)